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INTRODUCTION

Knowledge of the life history characteristics of co-
occurring species is fundamental to understanding
biotic processes that influence structure and mainte-
nance of assemblages of organisms (Schoener 1974,

Ross 1986, Roff 1992). Closely related teleost species
that coexist often display different life history charac-
teristics, such as reproductive and recruitment strate-
gies, diets and small-scale distributions and abun-
dances (Ross 1977, Roff 1991, Hyndes et al. 1997,
Genner et al. 1999, Colloca et al. 2010). Such strate-
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ABSTRACT: This study examined whether differences existed in the depth distributions and
reproductive strategies of the co-occurring Sillago robusta and S. flindersi in coastal waters off
eastern Australia. Marked spatial and temporal dissimilarities in demography and reproduction
were observed between the 2 species, with S. robusta being more abundant in the shallow
(15−30 m) strata and S. flindersi in the mid (31−60 m) strata, with neither species being consis-
tently abundant in the deep (61−90 m) strata. The size composition of S. robusta was similar across
depths, but smaller and immature S. flindersi predominantly occurred in the shallow strata, with
larger and mature individuals occurring deeper. These data indicate partitioning of habitat
resources, which may aid species coexistence. Both species potentially spawned year-round,
which is probably an adaptation to the region’s dynamic coastal environment. However, a greater
proportion of S. robusta was in spawning condition between September and March, whereas
S. flindersi displayed no such temporal pattern. Maturity ogives differed significantly between
sexes and locations for both species. Both species displayed similar ovarian development, with
females having multiple concurrent oocyte stages, indicating potential multiple spawning events
as evidenced in other Sillaginidae. For both species, estimated batch fecundity increased with fish
length, but S. robusta had a greater fecundity at any given length than S. flindersi. In contrast,
S. flindersi potentially produced larger-sized eggs and invested greater energy into gonad devel-
opment than S. robusta, indicating the 2 species have evolved slightly different reproductive
strategies. Despite this, both species are subjected to substantial trawl fisheries, which may have
already impacted their reproductive ecologies.
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gies maximise partitioning of resources, minimise the
potential for interspecific competition, and may con-
tribute to the coexistence of different assemblages
and thus affect assemblage structure (Schoener 1974,
Werner et al. 1977, Ross 1986).

Members of the teleost family Sillaginidae (whiting)
inhabit subtropical and temperate coastal shelf and
estuarine waters of the Indian and Western Pacific
Oceans (McKay 1992, www.fishbase.org). The family
contains 31 species, of which 13 occur in Australian
waters, with 6 of these distributed along the east
coast (McKay 1992). Sillaginids display a high degree
of similarity in coloration and external morphology,
having slender elongate fusiform-shaped bodies and
long conical snouts. Most species attain maximum to-
tal lengths less than 40 cm and longevities under
12 yr (McKay 1992, Kendall & Gray 2009). Sillaginids
are benthic carnivores that feed on small inverte-
brates such as polychaetes and crustaceans (Gunn &
Milward 1985, Hyndes et al. 1997, Hajisamae et al.
2006) and can be a prominent component of soft-sedi-
ment benthic ichthyofaunas (Gray & Otway 1994,
Chen et al. 2009, Gray et al. 2011, Nakane et al.
2013). Several species are important in commercial,
recreational and artisanal fisheries (McKay 1992,
Kailola et al. 1993, Gray & Kennelly 2003).

Life history and ecological aspects of several sil-
laginid species have been investigated; notably the
coastal shelf species Sillago sihama in Indian waters
(Radhakrishnan 1957, Reddy & Neelakantan 1992,
Hajisamae et al. 2006, Shamsan & Ansari 2010), S. ae-
olus in Japanese waters (Rahman & Tachihara 2005a,
b), Sillaginodes punctata off southern and south-west-
ern Australia (Fowler & Short 1996, Hyndes et al.
1998, Fowler et al. 1999, 2000), and Sillago analis, S.
burrus, S. vittata, S. robusta, S. schomburgkii and S.
bassensis off western Australia (Coulson et al. 2005,
Hyndes & Potter 1996, 1997, Hyndes et al. 1996a,b,
1997). Similarly, the demographic characteristics of
the estuarine-nearshore distributed S. ciliata, S. mac-
ulata and S. analis have been examined in eastern
Australia (Cleland 1947, Burchmore et al. 1988,
Kendall & Gray 2009, Stocks et al. 2011). There have
been few investigations of the biological characteris-
tics of the eastern Australian coastal shelf species S.
robusta and S. flindersi, even though they are the
most abundant sillaginids inhabiting these waters and
are subject to substantial (approximately 2000 t per
annum) commercial fisheries (Rowling et al. 2010).

The distributions of S. robusta and S. flindersi over-
lap off eastern Australia; S. robusta consists of 2 dis-
parate populations extending between approxi-
mately 24° S and 34° S on the west and east coasts,

whereas S. flindersi is endemic to the east and south-
ern mainland coasts as well as around northeastern
Tasmania, occurring between approximately 25° S
and 44° S (Fig. 1). Both species are an important by-
product in coastal penaeid trawl fisheries (Kennelly
et al. 1998, Macbeth et al. 2012), whilst S. robusta is
targeted in a limited entry quota-based trawl fishery
in its northern distribution (Butcher & Hagedoorn
2003, Zeller et al. 2012). In contrast, S. flindersi is
taken across several multi-sector trawl and Danish-
seine fisheries managed by different jurisdictions
throughout its distribution (Kemp et al. 2012). De -
pending on the jurisdiction, different input and out-
put controls are used as management tools for each
species, including limited entry, fishing gear and ves-
sel restrictions, spatial and temporal closures, legal
length limits and total allowable catches. Concerns
over discarding in some fisheries have resulted in the
development of fishing gears that are more se lective
at retaining market-sized sillaginids (Broad hurst et
al. 2005, Graham et al. 2009). Similar attention to re -
solving the biological parameters of these species has
not taken place. Little is known about important
aspects of the reproductive biology of either species,
including lengths and ages at maturity, and modes,
times and locations of spawning. Without such infor-
mation, appropriate fishery and species management
plans cannot be evaluated.

Previous studies show that sillaginids generally at -
tain sexual maturity at young ages (1 to 3 yr), spawn
multiple times over protracted spawning seasons,
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Fig. 1. Distribution of Sillago robusta and S. flindersi through-
out Australia and the Yamba and Newcastle sampling 

locations off eastern Australia
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and display depth-associated ontogenetic shifts in
distribution that may assist partitioning of re sources
(Burchmore et al. 1988, Hyndes et al. 1996a,b, 1997,
Kendall & Gray 2009). Here we investigate whether
this general paradigm is applicable to S. robusta and
S. flindersi where their distributions overlap in
coastal waters off eastern Australia. We specifically
test whether the relative abundances, length compo-
sitions and reproductive characteristics of popula-
tions of these species differ temporally, and between
depths and locations.

MATERIALS AND METHODS

Study area and sampling procedures

Sampling was conducted in inner-continental shelf
waters (<100 m depth) across transects adjacent to
Yamba (29° 26’ S, 153° 20’ E) and Newcastle (32° 55’ S,
151° 45’ E) off eastern Australia (Fig. 1). This region is
characterised by a dynamic oceanography dominated
by the southward flowing East Australian Current
and associated eddies (Huyer et al. 1988, Roughan &
Middleton 2004, Suthers et al. 2011). The water col-
umn is usually thermally stratified in summer but not
always in winter, with surface water temperatures
typically oscillating between a mean maximum of 24
to 26° C in late summer (February−March) to a mean
maximum of 13 to 15° C in late winter/ spring (Au-
gust−September).

Sampling at both locations was stratified across 3
depth ranges; 15−30 m, 31−60 m and 61−90 m; here-
after referred to as the shallow, mid and deep strata
respectively. The middle of each depth range corre-
sponded to a distance of approximately 3, 13 and
26 km offshore at Yamba and 1, 7 and 10 km at New-
castle. All sampling was done over soft substrata
where commercial trawling for penaeid prawns and
whiting regularly occurs. Sampling took place at
night within 1 week of the full moon, every 4 weeks
at both locations. Sampling extended for 2 full years
between November 2005 and November 2007 at
Yamba and between October 2006 and November
2007 at Newcastle. Samples were collected using a
chartered ocean prawn trawl vessel from each port
rigged with standard regulated ‘triple’ gear, in which
each of the 3 nets had a headline length of 10.8 m,
stretched mesh of 42 mm hung on the diamond
throughout the body and cod-end, the latter which
had a circumference of 100 meshes. The general
selectivity of S. flindersi in this penaeid fishing gear
configuration is reported in Broadhurst et al. (2005).

Two replicate tows, each of 60 min bottom duration at
an average speed of 2.3 knots (a linear distance of
approximately 4.2 km) were completed in each depth
strata at both locations at each time of sampling. The
depth strata first sampled each month was randomly
chosen, after which either the deeper or shallower
depths were progressively sampled due to logistic
considerations. It took approximately 8 h to complete
all 6 tows at each location. For each replicate tow
(sample), the catch from all 3 nets was combined and
sorted, with all sillaginids identified and kept sepa-
rate for biological sampling. The number and total
weight of each sillaginid species captured in each
sample was determined on-board the vessel.

Processing of samples

Whole catches or random sub-samples (100 to 200
individuals) of both species from each replicate tow
were counted and measured (fork length [FL] nearest
1 mm) for relative abundance and length composi-
tion. The total weight of the catch and subsample
were weighed (nearest 5 g). A further subsample of
30 individuals of each species from each replicate
tow at each depth was retained on ice for processing
in the laboratory. These fish were measured for FL,
weighed (wet weight, nearest 0.1 g) and had their
gonads removed and weighed (blotted dry weight,
nearest 0.1 g) to calculate the gonadosomatic index
(GSI) for each individual: GSI = (gonad weight /
whole fish weight) × 100. Each gonad was staged
macroscopically following a development criteria
based on oocyte size, colour and visibility adapted
from Scott & Pankhurst (1992): for males: I = imma-
ture, II = spermatogenic, III = partially spermiated,
IV = fully spermiated, V = spent; for females: I = im -
mature, II = immature/regressed, III = vitellogenic, IV
= hydrated, V = ovulated, VI = spent. The gonads
from a subset of females of both species were kept
(preserved in 70 % alcohol) to determine oocyte
development and estimate potential batch fecundity
(described below in ‘Batch fecundity’).

Distributions and population structure

General linear models (GLMs), assuming a
Gaussian distribution with a log-transformed re -
sponse va ri able, were used to test for differences in
the relative abundance of each species across
depths, seasons nested in years and years at
Yamba, and across depths and seasons at Newcas-
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tle. Seasons were de fined as summer (December–
February), autumn (March–May), winter (June–
August), spring (September–November) (allowing
2 full years between December 2005 and November
2007). Akaike information criteria (AIC) values
were used to determine the most parsimonious
model and probability tests (F-tests at α = 0.05)
were used to determine the influence of each term
in each model by comparing change in deviance
when each term was included or excluded from the
model (Nelder & Wedderburn 1972, Quinn &
Keough 2002). Tukey’s post-hoc tests (α = 0.05)
were used to compare the different levels of each
significant factor. Differences between depths in
the length compositions of each species (pooled
across seasons) at each location were tested using
Kolmogorov-Smirnov (K-S) tests.

Oocyte development

Histological examination of a selection of pre-
served (70 % alcohol) Stage II, III and IV ovaries of
both species was used to determine the development
pattern of oocytes and to verify the macroscopic stag-
ing of females. Small sections were dissected from
the middle of each ovary, treated in an automated tis-
sue processor, with the resulting tissues embedded in
paraffin wax and sectioned at 5 µm thickness on a
rotary microtome. Sections were deparaffinised, dif-
ferentiated in acidified alcohol and stained in alco-
holic eosin. Histological staging was based on the
most advanced cohort of oocytes in each ovary sec-
tion (West 1990).

Individual oocyte development was examined by
determining the size distributions of oocytes in 10
random individuals of each species with Stage III
ova ries. The entire ovary was blotted dry and
weighed (0.0001 g), after which 3 replicate sub-
samples were taken from the mid-section of each
ovary, blotted dry, weighed (0.0001 g) and placed in
a sealed 70 ml sample jar containing 70 % alcohol
solution. Each sub-sample was placed in a sonic bath
(Unisonics FXP4) for a period no longer than 20 min
to dislodge individual oocytes from surrounding con-
nective tissue (Barnes et al. 2013). Oocytes from each
sub-sample were transferred into a petri-dish, sepa-
rated from each other, scanned and imaged at
1200 dpi resolution. Image analysis software (Image
J, Version 1.38) was used to determine the number
and size of oocytes in each sub-sample. Size−
frequency plots of oocyte diameters were produced
for each gonad.

Length at maturity

The estimated FL at which 50 % (L50) of males and
females attained reproductive maturity was deter-
mined by fitting a logistic regression model using the
binomial GLM function in R to the proportions of
immature (Stages 1 and II) and mature (Stages III and
above) fish in each 1 mm length class. The data used
in these analyses was obtained during periods of
high GSI. Differences between sexes and locations
(and years for Yamba) in the estimated L50 values of
each species were tested using the 2-sampled Z tech-
nique with α = 0.05 (Gunderson 1977).

Reproductive period

Temporal changes in mean male and female GSI
values and proportions of fish with each macroscopic
gonad stage (of individuals larger than the estimated
mean length at maturity) were used to estimate the
timing of spawning. Elevated GSI values and high
proportions of fish with gonads staged III to VI were
interpreted as probable spawning. The GLM proce-
dures outlined above (‘Distributions and population
structure’) were used to examine the influence of
depths, seasons and, where relevant, year and sea-
sons nested in year, on the proportions of mature indi -
viduals of each species present at each location. These
GLMs assumed a binomial distribution, treating
maturity as a binary response variable (1 = mature and
0 = immature), and used chi-squared (α = 0.05) proba-
bility tests within the analysis of deviance tables.

Batch fecundity

The largest size class of oocytes (vitellogenic,
>0.30 mm for S. robusta and >0.35 mm for S. flin dersi)
in mature, pre-spawning (Stage III) fishes were con-
sidered suitable for estimating potential batch fecun-
dity (BF) (Hunter et al. 1985). The ovaries of up to 25
individuals from each species collected mid-spawning
season at each location and in both years were exam-
ined. For each individual, the number of oocytes pres-
ent was calculated using the same methodologies de-
scribe above (‘Oocyte development’) for investigating
oo cyte size–frequency distributions. Potential BF was
estimated by scaling the number of oocytes present
within the weighed ovarian subsample to the total
preserved weight of the ovary. Log-linear models
were used to describe relationships between esti-
mated BF and FL and ANCOVA were used to test
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whether BF for each species differed according to lo-
cation and FL.

RESULTS

Relative abundance

The GLMs showed that depth and season influ-
enced the relative abundance of Sillago robusta and
S. flindersi in different ways. Notably, S. robusta
were most abundant in the shallow strata across most
seasons at Yamba and Newcastle (Tukey’s HSD tests:
p < 0.05, Fig. 2), whereas, S. flindersi were consis-
tently most abundant in the mid-depth strata across
all seasons at Yamba (for which data were combined
across years) and at Newcastle (Tukey’s HSD tests:

p < 0.05, Fig. 2). Neither species was consistently
caught in large numbers in the deep strata, with
S. robusta only found deep in spring, and S. flindersi
only in spring and winter at Yamba.

Seasonal changes in the relative abundance of
each species at each location were inconsistent and
dependent on depth and year (where relevant). For
example, abundances of S. robusta at Yamba (data
combined across depths) did not show any significant
differences between seasons in 2006, whereas they
were significantly greater in summer and autumn in
2007 (Tukey’s HSD tests: p < 0.05, Fig. 2). At Newcas-
tle, abundances of this species only varied between
seasons in the shallow strata, where they were signif-
icantly greater in summer compared to winter
(Tukey’s HSD test: p < 0.05, Fig. 2). In contrast, abun-
dances of S. flindersi at Yamba (data combined
across years and depths) were greatest in winter and
spring (Tukey’s HSD test: p < 0.05, Fig. 2), whereas at
Newcastle they were significantly lowest in autumn
(Tukey’s HSD test: p < 0.05, Fig. 2).

Population structure

The length compositions of samples of each species
differed significantly according to depth and location
(multiple K-S tests, p < 0.05 in all cases). Despite this,
some general patterns were evident; notably a simi-
lar length range of S. robusta was present across all
depth strata within each year at Yamba, and in the
shallow and deep strata at Newcastle (Fig. 3). A co -
hort of small-sized (<10 cm FL) S. robusta was pres-
ent in the shallow and mid-depth at Yamba in 2006
but not in 2007. For S. flindersi, a cohort of smaller-
sized (< 13 cm FL) individuals predominated the
shallow strata at both locations, whereas the mid and
deep strata primarily contained individuals > 13 cm
FL (Fig. 3). This later length cohort was also promi-
nent in the shallow strata at Yamba in 2007.

Oocyte development

Both species displayed a similar pattern of ovarian
development. Stage II ovaries contained unyolked
oocytes of a variety of sizes, whereas Stage III ovaries
contained a mixture of unyolked oocytes, partially
yolked oocytes and oocytes that were in an advanced
yolk stage of development (Fig. 4). The diameter
sizes of this latter cohort of oocytes ranged from 0.30
to 0.45 mm for S. robusta and 0.35 to 0.50 mm for
S. flindersi (Fig. 5). This suggested that S. flindersi
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might have produced larger eggs than S. robusta.
Stage IV ovaries contained hydrated oocytes as well
as oocytes in each of the previous stages of develop-
ment (Fig. 4).

Length at maturity

There was no consistent effect of sex on length at
maturity for either species. Notably, the L50 was sig-
nificantly (p < 0.05) smaller for males than females of
both species at both locations in 2007, but this was
not the case in 2006 when the L50 was significantly
(p < 0.05) greater for male than for female S. robusta
and there was no significant (p > 0.05) difference
between sexes for S. flindersi (Fig. 6). Evidence of

spatial interactions in length at maturity was also
apparent, with the L50 of S. robusta being signifi-
cantly (p < 0.05) smaller at Newcastle for both sexes
(Fig. 6). Significant spatial difference of length at
maturity was also observed for female S. flindersi,
which was greatest at Newcastle (p < 0.05), but not
for males (p > 0.05). Males displayed temporal varia-
tions, with the L50 being significantly (p < 0.05) larger
for both species at Yamba in 2006.

The estimated L50 values for male and female S. ro -
bus ta ranged from 12.84 to 15.35 cm FL and from
14.08 to 14.83 cm FL, respectively (Fig. 6). Similarly,
the estimated L50 values for male and female S. flin -
der si ranged from 13.27 to 13.96 cm FL and from 13.88
to 14.87 cm FL, respectively. The observed smallest
mature male and female S. robusta was 11.3 and
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13.0 cm FL at Yamba and 11.4 and
12.5 cm FL at Newcastle, respectively.
Likewise, the observed smallest ma-
ture male and female S. flindersi was
11.1 and 11.6 cm FL at Yamba and
11.0 and 13.0 cm FL at Newcastle, re-
spectively.

Spawning

The macroscopic staging of gonads
and changes in mean GSI values in -
dicated both species potentially
spawned year-round at both loca-
tions. Female and male S. robusta
and S. flindersi with mature gonads
(Stage III and higher) were present
each month at Yamba (except June
2007 for S. flindersi) and most months
at Newcastle (Fig. 7). Further, for
both species ovaries containing hy-
drated eggs (Stage IV) were collected
across most months at Yamba, al-
though few were observed at New-
castle. There was also no consistent
pattern for either species as to the
months when particular gonad stages
(mature/ immature) were most or
least prevalent. Nevertheless, for S.
robusta a greater proportion of Stage
I individuals were present in 2006
than 2007 at Yamba (Fig. 7)

The mean GSI values of female
and male S. robusta at Yamba dis-
played similar trends through time
and were generally lowest in late
autumn and winter (April to July in
2006 and May to July in 2007). Mean
GSI values tended to be highest be -
tween September and March in both
years, suggesting that potentially a
greater proportion of individuals
spawn throughout the austral spring
and summer (Fig. 8). There was no
evidence of any such trend for this
species at Newcastle where mean
GSI values were relatively high be -
tween April and October. The maxi-
mum mean (±SE) monthly GSI for fe -
male and male S. robusta was 2.86 ±
0.12 and 2.55 ± 0.23 at Yamba and
3.27 ± 0.82 and 1.85 ± 0.19 at New-
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castle, respectively. The mean GSI values of male
and fe male S. flindersi remained relatively stable,
displaying no seasonality throughout sampling at
either location (Fig. 8). The maximum mean (±SE)
monthly GSI for female (male) S. flindersi was 3.87 ±
0.18 and 4.29 ± 0.19 at Yamba and 4.07 ± 0.19 and
2.65 ± 0.24 at Newcastle, respectively.

For both species, the effect of year could not be
tested due to significant depth × season (nested in
year) and depth × year interactions. The maturity
data collected from Yamba were therefore analysed
in separate GLMs for the 2 years. The GLMs identi-
fied that a greater proportion of mature S. robusta
occurred in the mid compared to the shallow strata
in summer, winter and spring of 2006 and in sum-
mer, autumn and spring of 2007 at Yamba (Tukey’s
HSD test: p < 0.05, Fig. 9; note that, for both years,
this species was only caught in the deep strata dur-

ing spring). In contrast, the significant depth-related
effect in the GLM reflected a predominance of
mature fish in the shallow strata compared to the
deep strata at Newcastle (GLM: p (>Chi) < 0.05,
Fig. 9; but note that this species was primarily only
caught in the shallow strata and very few were
caught in the mid strata irrespective of season). A
significantly greater proportion of mature S.
flindersi occurred in the mid and deep strata com-
pared to the shallow strata across most seasons in
both years at Yamba (Tukey’s HSD test: p < 0.05,
Fig. 9). At Newcastle, the greatest proportion of
mature S. flindersi occurred in the mid strata in win-
ter and autumn (Tukey’s HSD test: p < 0.05, Fig. 9;
note that no S. flindersi were captured in the deep
strata during these seasons) but in the deep strata
in spring 2006 and summer 2007 (Tukey’s HSD test:
p < 0.05, Fig. 9).
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Batch fecundity

There was no significant difference between loca-
tions in the relationship between estimated BF and FL
for either species (ANCOVA, p > 0.05 in all cases), so
data were combined across locations for each species.
Estimated BF of both species significantly increased
with FL (p < 0.001 in both cases); the log-linear rela-

tionship [log(BF) = log(a) + b × log(FL)]
was: log(a) = −3.0787, b = 4.9280, r2 =
0.6921, n = 25 for S. robusta and log(a) =
−5.2534, b = 5.5159, r2 = 0.7524, n = 24 for
S. flindersi. Estimated BF ranged from
7048 to 284 755 eggs for S. robusta meas-
uring 13.0 to 21.6 cm FL, and from 6773 to
256 100 for S. flindersi measuring 13.1 to
23.4 cm FL. These data  indicated that at a
given FL, fecundity was greater in S. ro-
busta than in S. flindersi.

DISCUSSION

Population structuring and habitat
partitioning

Spatial and temporal structuring of east-
ern populations of Sillago robusta and S.
flindersi was evident along a number of
gradients suggesting possible partitioning
of resources similar to other sympatric Sil-
laginidae (Hyndes et al. 1996a,b, 1997)
and teleost families (Ross 1977, Genner et
al. 1999, Barnes et al. in press). In general,
S. robusta was more prevalent in the shal-
low strata whereas S. flindersi mostly oc -
curred in the mid strata, while neither spe-
cies consistently utilised the deep strata.
Depth stratification of sillaginid and teleost
populations and assemblages is wide-
spread (Werner et al. 1977, Hyndes et al.
1999, Labropoulou et al. 2008, Gray et al.
2011).

The population length structure of S.
robusta was similar across all depth strata,
which is concordant with western popula-
tions of the species (Hyndes & Potter
1996). In contrast, smaller and immature
S. flindersi were more pro minent in the
shallow strata compared to the mid and
deep strata, which were dominated by
larger (mature) individuals. These data
support the ‘smaller-shallower’ phenom-

ena (Middleton & Musick 1986, Stefanescu et al.
1992) and suggest that S. flindersi uses the shallow
strata as a nursery area and then moves to deeper
waters with growth and maturity. This is synonymous
with the hypothesised life history of other Sil-
laginidae, in cluding coastal S. bassensis and S. vitta -
ta (Hyndes & Potter 1996, Hyndes et al. 1996b) and
estuarine S. ciliata and S. maculata (Weng 1986,
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Burch more et al. 1988). Depth-related ontogenetic
shifts in distribution are common among teleosts
(Mac pherson & Duarte 1991, Methratta & Link 2007,
Labropoulou et al. 2008), with shallow waters hypo -
thesised to provide more food and greater protection
of juveniles from predators (Ryer et al. 2010). Such
stratification is also a potential mechanism to reduce
intra- and interspecific competition and aid broad-
scale partitioning of resources among co-occurring
species (Hyndes & Potter 1996, 1997). In the present
study, the shallow-water preference of small S.
flindersi placed them directly in the preferred habitat
of S. robusta. It is conceivable that a dietary mecha-
nism ensured the smaller S. flindersi individuals
were not competitively disadvantaged (Hyndes et al.
1997, Barnes et al. 2011). Alternatively, necessary
resources in the shallow strata may not have been
limited, reducing the need for species stratification.

Spawning

The data presented here indicate that S. robusta
and S. flindersi are income-spawners (McBride et al.
2013), yet each species may have evolved slightly
different reproductive strategies to deal with the
dynamic coastal environment they inhabit. Despite
neither species investing greatly in reproduction (low
GSI values of females and males), the larger-growing
S. flindersi generally displayed higher GSI ratios,
suggesting it invests more energy into gonad produc-
tion than S. robusta. Comparable differences in re -
productive investment between other co-occurring
Sillaginidae have been observed (Hyndes & Potter
1996). Further, our data suggest that S. flindersi pro-
duced fewer (at any given length) but potentially
larger eggs than S. robusta. We could not ascertain
here, however, the effects of such trade-offs between
the potential quality and quantity of larvae produced
(Duarte & Alcaraz 1989) on the reproductive success
and population replenishment of either species.

Despite these apparent differences, the ovaries of
mature S. robusta and S. flindersi contained oocytes of
multiple sizes and developmental stages, indicating
their potential to spawn several times within a given
‘spawning’ period (De Vlaming 1983, Hunter &
Macewicz 1985, West 1990). This concurs with other
sillaginids (Lee & Hirano 1985, Hyndes & Potter 1996,
Fowler et al. 1999, Kendall & Gray 2009), adding fur-
ther support to the hypothesis that the Sillaginidae
are multiple-batch spawners. This spawning strategy
is widespread among teleosts (Sarre & Potter 1999,
Walsh et al. 2011, Gray et al. 2012), allowing individuals

to maximize the number of eggs produced over a
 particular period (Burt et al. 1988, McBride at al. 2013).

Mature individuals of both species could potentially
spawn over extended periods. Fowler et al. (1999) es-
timated that individual Sillaginodes punctata spawned
at least 20 times throughout their 3 mo spawning
 period. We could not determine the frequency and
number of times an individual of either species may
have released eggs throughout any given period or
throughout its life. Consequently, the total number of
eggs that each individual produces each year (total fe-
cundity) could not be estimated. Nevertheless, esti-
mated batch fecundity in both species was positively
related to fish length, indicating that reproductive
output is potentially greater in larger individuals, as in
most teleosts (Parker 1992). Having a greater abun-
dance of larger (and presumably older) individuals
could theoretically increase the collective reproduc-
tive potential of teleost populations, and enhance lar-
val survival (Berkeley et al. 2004). Fishing gears that
allow a greater proportion of fish to reach larger sizes
could enhance the reproductive potential and sustain-
ability of these sillaginid populations.

The potential year-round spawning of S. robusta
and S. flindersi, as evidenced by changes in GSI val-
ues and the macro- and microscopic staging of go-
nads, is further corroborated by the occurrence of
pelagic larvae of both species year-round in coastal
waters off eastern Australia (Gray & Miskiewicz
2000). This extended period of spawning is in con-
trast to western populations of S. robusta occurring at
 similar latitudes that spawn between December and
March (Hyndes & Potter 1996). Our data indicate,
however, that a greater proportion of the eastern pop-
ulations of S. robusta spawn between September and
March. This predominate spring−summer spawn ing
pattern is also true for the east-Australian estuarine-
based sillaginids S. ciliatia and S. maculata (Morton
1985, Burchmore et al. 1988, Kendall & Gray 2009) as
well as a suite of other coastal sillaginids, including
S. burrus, S. bassensis, S. schomburgkii, S. vittata and
S. aeolus (Hyndes & Potter 1996, 1997, Hyndes et
al. 1996b, Rahman & Tachihara 2005a). Periods of
 increasing water temperature and photo period may
potentially trigger reproductive development and
spawning in these species (Hyndes & Potter 1996). In
contrast, similar proportions of the S. flindersi popula-
tions sampled here spawned year-round, indicating
that changes in water temperature and photoperiod
were not the primary cue to trigger reproductive
 development and spawning in this species.

The extended spawning of eastern populations of
S. robusta and S. flindersi and the potential ability of
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individuals to spawn multiple times in a spawning
season is probably an adaptation to the stochastic
and dynamic oceanography of this coastal region.
This strategy should enhance the probability of suc-
cessful survival and recruitment of some eggs and
larvae (Lambert & Ware 1984, Lowerre-Barbieri et al.
2011, McBride et al. 2013) and could also be a life
 history tactic to enhance dispersal of young as well
as maintaining genetic connectivity among popula-
tions along eastern Australia, as suggested for other
coastal boundary current inhabitants (Hare & Cowen
1993, Gray et al. 2012). Further, spawning by species
in the depths examined here may be advantageous
to maximising alongshore dispersal and subsequent
retention of eggs and larvae in shelf waters by the
East Australian Current (Roughan et al. 2011).

The observed prolonged reproductive period of
both species in eastern Australia compared to other
sillaginid populations could also potentially be a re -
sponse to high levels of fishing-related mortalities in
these particular populations. High exploitation rates
can impact teleost reproductive strategies, in cluding
lowering sizes and ages at maturity, increasing
egg production and spawning frequency, and length-
ening spawning periods (Rochet 1998, Sharpe &
Hendry 2009, Wright & Trippel 2009). The sillaginid
populations examined here have been commercially
harvested for over 100 yr, with catches over the past
20 yr exceeding 2000 t per annum. These levels of
exploitation could potentially be sufficient to have
already caused modifications of reproductive strate-
gies of these populations.

Despite the differences outlined above, spawning
of S. robusta and S. flindersi overlapped greatly in
space and time. This is common among closely re -
lated teleosts (Muthiga 2003, Park et al. 2006, Toma -
iu olo et al. 2007) and may be related to similar evolu-
tionary histories and environmental requirements
(Mercier & Hamel 2010). Thus, there was no specific
evidence of large-scale reproductive isolation be -
tween these sillaginid species (Wellenreuther &
Clements 2007). Reproductive isolation can occur be -
tween sympatric species over much finer spatial and
temporal scales than examined here (Colin & Clavijo
1988, Colin & Bell 1991, Sancho et al. 2000), which
could be further explored in these species.

Maturity and fishery considerations

The estimated L50 for both species were mostly
smaller for males compared to females, which is in
general agreement with other sillaginids (Kendall &

Gray 2009). Length at maturity of S. robusta as deter-
mined here was greater by about 1.5 to 2.0 cm than
for western populations (Hyndes & Potter 1996). A
ple thora of biotic and abiotic factors, as well as
anthro po genic influences (e.g. fishing) can poten-
tially cause broad-scale variations in length (and
age) at maturity among populations (Lassalle et al.
2008). Importantly, these data demonstrate the po -
tential for intraspecific plasticity in life history char-
acteristics among discrete populations of teleosts
(Gust et al. 2002, Ruttenberg et al. 2005, Blanck &
Lamouroux 2007, Sala-Bozano & Mariani 2011),
emphasising the need for regional information of
population demographics for fisheries assessment
and management.

Significant spatial and temporal differences in the
estimated L50 of each species were also detected at
the smaller regional scale examined here, with dif-
ferences in parameter estimates between years being
equal to between locations. Although such results
could be artefacts of variations in sample composi-
tion, they demonstrate the potential limitations of
such demographic information collected at one place
and time (i.e. typical snapshot studies). Indeed, a lack
of information of levels of variability in demographic
parameters (including rates of growth and mortality)
across a species distribution could confound biologi-
cal-based fisheries assessments and management
plans (Morgan & Bowering 1997, Ruttenberg et al.
2005, Jakobsen et al. 2009).

Fisheries managers often set the retained legal
lengths of fish at the L50 to potentially allow 50% of
individuals to spawn at least once prior to harvesting
(King & McFarlane 2003). Since eastern populations
of S. robusta and S. flindersi are often caught to -
gether in large quantities as by-product by commer-
cial trawlers targeting penaeid prawns, a common
re tained legal length of 14 cm FL (~15 cm total
length) could be applied to these species in these
fisheries if required. This length corresponds closely
to the 50% length selection for these species in
35 mm square mesh cod-ends tested and recom-
mended for use in the east Australian demersal
penaeid trawl fisheries in which these species are an
important by-product (Broadhurst et al. 2005, Gra-
ham et al. 2009, Macbeth et al. 2012). For other fish-
eries in which these sillaginids are the target species,
having gears that specifically select fish > L50 (e.g.
20 cm FL) could aid reproductive potential and re -
source sustainability. In high-volume multispecies
trawl fisheries, it is often preferable to manage and
regulate the sizes of fish retained by prescribing the
selectivity of the fishing gears rather than enforce-
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ment of specific legal lengths, which can be logisti-
cally problematic for fisheries operators as well as
compliance officers. Nevertheless, prior to introduc-
ing and mandating any specific fishing gears (or re -
tained legal lengths for these sillaginid species) in
any particular fishery, assessments of rates of sur-
vival of non-retained individuals in such fishing
gears (Broadhurst et al. 2006, Coggins et al. 2007), as
well as broader market and economic impacts need
to be considered. Moreover, the potential effects on
population reproductive output and resource sustain-
ability of alternate management arrangements that
protect larger (more fecund) fish, either by harvest-
ing particular slot sizes (Gwinn et al. 2013) or provi-
sion of refuge (no-take) areas (Roberts et al. 2005)
needs investigating.
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